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Abstract

An algorithm is proposed to solve Biot’s consolidation problem using meshless method called a radial point in-

terpolation method (radial PIM). The radial PIM is advantageous over the meshless methods based on moving least-

square (MLS) method in implementation of essential boundary condition and over the original PIM with polynomial

basis in avoiding singularity when shape functions are constructed. Two variables in Biot’s consolidation theory,

displacement and excess pore water pressure, are spatially approximated by the same shape functions through the radial

PIM technique. Fully implicit integration scheme is proposed in time domain to avoid spurious ripple effect. Some

examples with structured and unstructured nodes are studied and compared with closed-form solution or finite element

method solutions. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Meshless methods have achieved remarkable progress in recent years. The diffuse element method
(DEM) (Nayroles et al., 1992) was proposed earliest to use moving least-square (MLS) method to construct
shape functions over a cluster of scattered nodes. Reproducing kernel particle method (Liu et al., 1995)
introduced a correction function and a window function to improve the smoothed particle hydrodynamic
method (SPH). Hp-cloud method (Duarte and Oden, 1996) was based on the partition of unity. Belytschko
and his colleagues (Belytschko et al., 1994) improved the DEM based on Galerkin weak forms to form an
element-free Galerkin (EFG) method. The EFG has been widely applied to various problems such as solid
mechanics and deformable multiphase porous media (Modaressi and Aubert, 1998). Being different from
above schemes, a novel interpolation scheme called point interpolation method (PIM) was proposed to
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avoid the disadvantages of MLS (Liu and Gu, 2001; Wang et al., 2001). The shape functions obtained by
PIM are of delta function properties. The original PIM (Liu and Gu, 2001) is based on polynomial basis
functions. It works very well for one-dimensional (1D) problems because the rank of the polynomial is
easily determined. When it is extended to multi-dimensional problems, the determination of the ranks is not
an easy task. A major difficulty is to select basis functions. In order to overcome this difficulty, a radial PIM
(Wang and Liu, 2001) was proposed. The basic idea was to map the multi-dimensional space into 1D space
through a radial function. This mapping makes the choice of basis functions more easily. In order to in-
clude the accuracy of polynomials, the mixed bases of radial and polynomial bases are recommended in the
radial PIM.

Radial basis functions have been successfully applied in partial differential equations (Kansa, 1990;
Fasshauer, 1997; Wendland, 1999; Golberg et al., 1999; Coleman, 1996). Kansa (1990) was a pioneer who
adopted radial basis functions to solve partial differential equations. He worked on the strong form and his
algorithm was similar to the finite difference method (FDM). The difference is the method worked with
both regular and irregular node distributions. Collocation methods with radial basis functions were recently
developed as an effective meshless method (Fasshauer, 1997; Wendland, 1999; Zhang et al., 2000). Col-
location methods are truly meshless methods. But they have two disadvantages except possibility of nu-
merical stability: The first one is the difficulty to treat boundary conditions including internal and external
boundaries. The current treatment is almost the same as the FDM. The second one is the requirement
of higher order derivatives of shape functions. This requirement is sometimes difficult to be satisfied in
practice, because higher smoothness will make the shape functions complicated. The meshless methods
based on the weak form like Galerkin method are attractive to avoid above two demerits, although they
require background mesh for integration. Because the background mesh is required, the meshless methods
should be called pseudo-meshless methods.

This paper works on the meshless methods based on weak form. An algorithm for numerical solutions is
proposed for the Biot’s consolidation problem based on the radial PIM. This paper is organized as follows:
Biot’s consolidation theory is described through six physical concepts. This description can accommodate
any constitutive law of materials and seepage although this paper treats only linear constitutive laws. Then
its weak form is developed through a global equilibrium at each time step. Two spatial variables, dis-
placement and excess pore pressure, are interpolated by the same shape functions constructed by radial
PIM technique. A fully implicit scheme in time domain is suggested to avoid spurious ripple effect. Finally,
1D and two-dimensional (2D) consolidation problems are calculated and compared with closed-form so-
lution or finite element (FEM) results available.

2. Biot’s consolidation theory and its weak form

Soil skeleton and pore water consist of soil–water mixture of saturated soils. These two systems interact
at micro-level. Biot’s consolidation theory (Biot, 1941) provides a macro-level understanding for the in-
teraction. It is composed of following six physical concepts:

• Equilibrium equation of soil–water mixture

orij
oxj

þ bi ¼ 0 in V ð1Þ

Or its incremental form in time interval ½t; t þ Dt�

oDrij
oxj

þ Dbi ¼ �
ortij
oxj

�
þ bti

�
in V ð2Þ
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• Relationship of displacement and strain for soil skeleton

Deij ¼
1

2

oDui
oxj

�
þ oDuj

oxi

�
in V ð3Þ

• Constitutive law of soil skeleton in differential form

dr0
ij ¼ Dijkl dekl in V ð4Þ

• Darcy’s seepage law for pore water flow

qi ¼
Kij
cw

oP
oxj

in V ð5Þ

• Terzaghi’s effective stress principle

rij ¼ r0
ij þ Pdij ð6Þ

• Continuity equation

oev
ot

¼ oqi
oxi

ð7Þ

where rij, r0
ij and P are total stress tensor, effective stress tensor and excess pore water pressure at any time t

and bi the unit body force. Dui is the displacement increment and Drij, Deij total stress and strain increments
in time interval [t; t þ Dt]. The discharge of excess pore water is qi in ith direction. cw is the density of water.
In SI system, its value can be taken as 10 kN/m3. Dijkl is the material matrix of soil skeleton determined by
constitutive law of materials. Kij is permeability tensor of soil skeleton which usually has non-zero com-
ponents Kx in x direction and Ky in y direction, respectively. ev is the volume strain of soil skeleton:

ev ¼
oui
oxi

ð8Þ

Boundary conditions include two parts: boundaries for solid and fluid

For soil skeleton boundary

ui ¼ �uui0 on S�uu 	 ½0;1Þ
r0
ijnj ¼ T i on Sr 	 ½0;1Þ

�
ð9Þ

Where n ¼ n1 n2 n3f g is the outwards normal direction and ni is its directional cosine.

For fluid boundary

P ¼ P0 on Sp 	 ½0;1Þ
qi ¼ qi0 on Sq 	 ½0;1Þ

�
ð10Þ

Initial condition

ui ¼ 0
P ¼ 0

on V
�

	 0� ð11Þ

If only soil skeleton is considered, it has two components of body forces:

(1) Effective unit weight b0�ııð¼bi � cwÞ.
(2) Seepage force induced by hydraulic gradient �oP=oxið Þ.

In a time interval of [t; t þ Dt], displacement increments of soil skeleton should satisfy the weak form of
equilibrium equation (2) of soil skeleton
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Z
V

dðDeÞf gT Dr0� �
dvþ

Z
V

d
oDui
oxi

� �� �T

fPgtþDt
dv�

Z
V
fdðD�uuÞgT Dbf gdv

�
Z
Sr

fdðD�uuÞgTfngP tþDt ds�
Z
Sr

fd D�uu
� 	

gT DT
� �

ds

¼ �
Z
V

d Deð Þf gTfr0tgdvþ
Z
Sr

fdðD�uuÞgTfTgtdvþ
Z
V
fdðD�uuÞgTfbtgdv ð12Þ

where d D�uuð Þ is the variational of displacement increment. The ‘‘d’’ denotes the variational. The term at the
right-hand side includes the un-balanced force at previous time step. This un-balanced force can be au-
tomatically corrected at the next step. Thus Eq. (12) can prevent error accumulation at each time step. It is
possible to achieve the same accuracy at each time step. This auto-corrector is special useful in incremental
computation schemes for dissipation problems.

Time integration is applied to continuity equation (7) and then the weak form for spatial variables ðx; yÞ
is expressed as

�
Z
V

dPf gT oDui
oxi

� �
dv ¼ � 1

cw

Z tþDt

t

Z
Sq

fdPgTfqgds
" #

dt þ 1

cw

Z tþDt

t

Z
V

odP
oxi

� �T

Ki
oP
oxi

� �
dv

" #
dt

ð13Þ

where dP expresses the variational of displacement and excess pore water pressure in Eqs. (12) and (13),
respectively.

Borja (1986) developed a finite element formulation for Biot’s consolidation theory through a variational
approach. His formulation is completely expressed in incremental form, not considering the accumulated
errors at the previous time steps.

3. Radial point interpolation method

Consider an approximation function uðxÞ in the influence domain. This function has a set of arbitrarily
distributed points PiðxiÞði ¼ 1; 2; . . . ; nÞ within the influence domain. n is the number of nodes. The function
has value ui at each node point xi. Radial PIM method constructs the uðxÞ by passing through all these
nodes. A general form is a linear combination of radial basis BiðxÞ and polynomial basis pjðxÞ:

uðxÞ ¼
Xn
i¼1

BiðxÞai þ
Xm
j¼1

PjðxÞbj ¼ BTðxÞaþ PTðxÞb ð14Þ

where ai is the coefficient for BiðxÞ and bj the coefficient for piðxÞ (usually, m < n).
The vectors are defined as

aT ¼ a1 a2 a3 
 
 
 an½ �
bT ¼ b1 b2 
 
 
 bm½ �
BTðxÞ ¼ B1ðxÞ B2ðxÞ B3ðxÞ 
 
 
 BnðxÞ½ �
PTðxÞ ¼ p1ðxÞ p2ðxÞ 
 
 
 pmðxÞ½ �

ð15Þ

Generally, the BiðxÞ has following form for a 2D problem

BiðxÞ ¼ BiðriÞ ¼ Biðx; yÞ ð16Þ
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where ri is the distance between interpolating point ðx; yÞ and node ðxi; yiÞ defined as

ri ¼ xð
h

� xiÞ2 þ yð � yiÞ2
i1=2

ð17Þ

Polynomial basis functions have following monomial terms:

PT xð Þ ¼ 1 x y x2 xy y2 
 
 

� �

ð18Þ

The coefficients ai and bj in Eq. (14) are determined by enforcing the uðxÞ to pass through all n scattered
points. For example, the interpolation at the kth point has

uk ¼ u xk; ykð Þ ¼
Xn
i¼1

aiBi xk; ykð Þ þ
Xm
j¼1

bjPj xk; ykð Þ k ¼ 1; 2; . . . ; n ð19Þ

The polynomial term is an extra requirement. A constraint is necessary to insure that the approximation
is unique:Xn

i¼1

Pj xi; yið Þai ¼ 0 j ¼ 1; 2; . . . ;m ð20Þ

It is expressed in matrix form as follows

B0 P0

PT
0 0

� �
a

b

� �
¼ ue

0

� �
or G

a

b

� �
¼ ue

0

� �
ð21Þ

where the vector for function values at each node is

ue ¼ u1 u2 u3 
 
 
 un½ �T ð22Þ
The coefficient matrix B0 on unknowns a is

B0 ¼

B1ðx1; y1Þ B2ðx1; y1Þ 
 
 
 Bnðx1; y1Þ
B1ðx2; y2Þ B2ðx2; y2Þ 
 
 
 Bnðx2; y2Þ

..

. ..
. ..

. ..
.

B1ðxn; ynÞ B2ðxn; ynÞ 
 
 
 Bnðxn; ynÞ

2
6664

3
7775
n	n

ð23Þ

The coefficient matrix P0 on unknowns b is

P0 ¼

P1ðx1; y1Þ P2ðx1; y1Þ 
 
 
 Pmðx1; y1Þ
P1ðx2; y2Þ P2ðx2; y2Þ 
 
 
 Pmðx2; y2Þ

..

. ..
. ..

. ..
.

P1ðxn; ynÞ P2ðxn; ynÞ 
 
 
 Pmðxn; ynÞ

2
6664

3
7775
n	m

ð24Þ

The distance is directionless, Bkðxi; yiÞ ¼ Biðxk; ykÞ. The unique solution is obtained if the inverse of matrix G
or B0 exists:

a

b

� �
¼ G�1 ue

0

� �
ð25Þ

The interpolation is finally expressed as

uðxÞ ¼ BTðxÞPTðxÞ
� �

G�1 ue

0

� �
¼ uðxÞue ð26Þ
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where the matrix of shape functions uðxÞ is defined by

uðxÞ ¼ /1ðxÞ /2ðxÞ 
 
 
 /iðxÞ 
 
 
 /nðxÞ½ �

/kðxÞ ¼
Xn
i¼1

BiðxÞGi;k þ
Xm
j¼1

PjðxÞGnþj;k
ð27Þ

where Gi;k is the ði; kÞ element of matrix G�1. Once the inverse of matrix G is obtained, the derivatives of
shape functions are

o/k

ox
¼

Xn
i¼1

oBi
ox
Gi;k þ

Xm
j¼1

oPj
ox
Gnþj;k

o/k

oy
¼

Xn
i¼1

oBi
oy
Gi;k þ

Xm
j¼1

oPj
oy
Gnþj;k

ð28Þ

Two particular forms of radial basis functions Biðx; yÞ are introduced hereafter: Multiquadrics and
Gaussian type. Multiquadric basis (called MQ) was proposed by Hardy (1990). Its original form is extended
to following form in this paper

Biðx; yÞ ¼ r2i
�

þ R2
�q

RP 0 ð29Þ

where q and R are two parameters. The partial derivatives are obtained as follows

oBi
ox

¼ 2q r2i
�

þ R2
�q�1

xð � xiÞ

oBi
oy

¼ 2q r2i
�

þ R2
�q�1

yð � yiÞ
ð30Þ

Gaussian type (called EXP) radial functions are widely used in mathematics (Powell, 1992):

Biðx; yÞ ¼ expð�br2i Þ ð31Þ

where bðbP 0Þ is a shape parameter. The partial derivatives are again obtained as follows

oBi
ox

¼ �2bBiðx; yÞðx� xiÞ

oBi
oy

¼ �2bBiðx; yÞðy � yiÞ
ð32Þ

4. Discretization of weak form

4.1. Spatial discretization

Displacement increment ðDux;DuyÞ and excess pore water pressure P at any time t are discretized by the
approximation given by Eq. (26). Eq. (12) is discretized as follows:

KDuþ KVP ¼ DFb þ DFt þ Fr ð33Þ
where K is the stiffness matrix of soil skeleton, KV corresponds to the seepage force on the soil skeleton. The
forces have three sources: body force increment ðDFbÞ, traction force increment ðDFtÞ and residual force
ðFrÞ due to un-equilibrium at the previous step. The vector Du denotes for nodal displacement increments
Dux;Duy
� �

for all domain and vector P for the nodal excess pore pressure.
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Similarly, Eq. (13) is discretized as follows:

KT
V Du ¼

Z tþDt

t
KpPdt ð34Þ

As pointed out by Murad et al. (1996) and Murad and Loula (1994), different interpolations for dis-
placement and pore water pressure will develop two kinds of methods: stable method whose displacement
interpolation is one order higher than pore water pressure and unstable method whose interpolations are
the same order for displacement and pore water pressure. They have different responses to the initial
condition because the initial condition is the incompressible response of the solid–fluid aggregate.

4.2. Temporal discretization

Single step method is used in this paper. Any integrable function f ðxÞ is numerically integrated through
following formula:Z tþDt

t
f ðxÞdx ¼ Dt ð1½ � hÞf ðtÞ þ hf ðt þ DtÞ� ð35Þ

Here 06 h6 1. Combining Eqs. (33)–(35) obtains

K KV

KT
V �DthKp

� �
Du
P

� �
¼ DFb þ DFt þ Fr

Dt 1� hð ÞKpP
t

� �
ð36Þ

The value of h is important to accuracy, stability and spurious ripple effect. The analysis has shown that the
condition for no spurious ripple effect is as follows:

fDt <
1

1� h
ð37Þ

where f is an eigenvalue. Hence for any value of h 6¼ 1 the numerical solution can exhibit a spurious ripple
effect for values which are not satisfied with Eq. (37). The approximation is unconditionally stable when
hP 0:5. h ¼ 0 is fully explicit Euler algorithm that is stable only when time step size is small enough (Wood,
1990). The time step size is also imposed from the condition of no spurious ripple effect as expressed by
Eq. (37). h ¼ 1 is fully implicit (backward Euler) algorithm. There is no requirement on time step size from
both stability and spurious ripple effect. The algorithm has the unique second order accuracy only when
h ¼ 0:5, which is the famous Crank–Nicolson (1949) scheme. Fully implicit algorithm is recommended in
this paper. When h ¼ 1, Eq. (36) becomes

K KV

KT
V �DtKp

� �
Du
P

� �
¼ DFb þ DFt þ Fr

0

� �
ð38Þ

This is to say that the excess pore water pressure at the previous step has no contribution to the current load
vector.

5. Assessment through numerical examples

5.1. One-dimensional consolidation problem

A regular node distribution is shown in Fig. 1 (833 nodes). Single-side drainage is assumed. Two sides
and bottom are all fixed for displacements. Thickness of the soil layer is assumed to be H ¼ 16 m. Soil
parameters are assumed as linear elasticity with E ¼ 40000 kPa, m ¼ 0:3 and k ¼ 1:728	 10�3 m/day.
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Surcharge at the upper surface is Dr ¼ 10 kPa. Closed-form solution for this problem (Terzaghi and Peck,
1976) is:

P ¼ 4

p
Dr

X1
n¼1

1

2n� 1
sin

2n� 1ð Þpy
2H

� �
e�ð2n�1Þ2p2

4
TV ð39Þ

Degree of consolidation Ut is

Ut ¼ 1� 8

p2

X1
n¼1

1

2n� 1ð Þ2
e� 2n�1ð Þ2p2

4
TV ð40Þ

where the parameters are defined as

TV ¼ CV
H 2

t; CV ¼ k
cwmv

; mv ¼
ð1þ mÞð1� 2mÞ

Eð1� mÞ ð41Þ

Surface settlement St at any time t is given by

St ¼ UtmvDrH ð42Þ

The regular node distribution is used for comparison. Influence domain is taken as 1.5 and average nodes in
each Gauss point are 15.34. The EXP basis function with parameter b ¼ 0:025 is used. Linear polynomial
(m ¼ 3) is also included for all following cases. Time domain uses fully implicit scheme for discretization.
Two time step sizes are designed to adapt different dissipation rates. Time step size is 0.2 days before 2 days
and 1.2 days within the subsequent 18 days. Numerical results are compared with the closed-form solution
above. Fig. 2 compared the surface settlement of the layer and Fig. 3 compared the dissipation process of
excess pore water pressure at three node points. They agree well with closed-form solutions. The excess pore
water pressures are almost the same within the layer at the beginning of consolidation. They dissipate

Fig. 1. 1D Terzaghi’s consolidation problem and meshless model.

1564 J.G. Wang et al. / International Journal of Solids and Structures 39 (2002) 1557–1573



quickly in the first three days and then dissipate gradually. The dissipation is almost completed after 20
days. This is due to the high permeability of soil layer.

Fig. 2. Surface settlement curve and comparison with closed-form solution.

Fig. 3. Dissipation of excess pore water pressure at different points (compared with closed-form solution).
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5.2. Two-dimensional consolidation problem under strip foundation

A 2D problem of consolidation is presented here. A schematic model and its meshless models are shown
in Fig. 4. This is a plane strain consolidation problem under a strip loading of 10 kPa. Foundation soil is
the same as 1D case. Top surface is full drainage and the rest boundaries are all impervious. Horizontal
displacement is fixed along vertical boundary and vertical displacement is fixed along horizontal boundary.
EXP basis with linear polynomial is used. There is no closed-form solution available, thus FEM is carried
out for comparison. The FEM uses four-node isoparametric elements with the same (regular) nodes as
meshless methods. All other conditions are the same as meshless methods. Initial values for displacement
and excess pore water pressure are given zeros as pointed out by Eq. (11), but these are the values at the
time 0�. The values at the time 0þ are obtained through giving short time step size (Dt ¼ 0:001 day in this
example) and letting the drainage boundary all un-drainage. This can approximately simulate the un-
drainage conditions (Borja, 1986; Murad et al., 1996). After initial values at time 0þ are obtained, subse-
quent time steps are carried out through Eq. (38).

The numerical results for regular node distribution are presented here. Fig. 5 shows the dissipation
history of excess pore water pressure along the middle line of the foundation. The FEM results are also
plotted for comparison. Generally, both agree very well. Again, the dissipation process is faster within three
days. When time elapses about 20 days, dissipation process of excess pore water pressure almost completes.

Fig. 4. 2D consolidation problem under strip load.
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Correspondingly, the vertical displacements, uy , reach their stable states as shown in Fig. 6. Foundation has
an immediate displacement after surface load although no pore water pressure dissipates. This displacement
corresponds to the elastic deformation of soil–water mixture without volume change and has no time effect.

Fig. 5. Dissipation of excess pore water pressure along middle line.

Fig. 6. Displacement distribution along middle line.
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Biot’s consolidation theory treats dissipation of pore water pressure and deformation of soil skeleton si-
multaneously, thus the deformation and the dissipation are obtained at the same time. The displacement

Fig. 7. Comparison of displacements for node irregularity.

Fig. 8. Comparison of dissipation process for node irregularity.
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is subsequently increasing with the dissipation of excess pore water pressure and finally reaches its stable
value when dissipation process stops.

Unstructured or irregular node distribution (915 nodes) as shown in Fig. 4 is used here to check the
suitability of the radial PIM. Influence domain is the same as above. Average node points per Gaussian

Fig. 9. Spurious ripple effect when h ¼ 0:5.
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point are 10.72 and the maximum number of nodes is limited to 30. MQ method ðq ¼ 1:03;R ¼ 0:1Þ is used
in the computation. Fig. 7 compared the settlement and Fig. 8 compared the dissipation of excess pore
water pressure at different node points. They show that the radial PIM method is not sensitive to the ir-
regularity of node distribution. Both regular and irregular node distributions give satisfactory results. As
a conclusion from above two examples, the radial PIM method is feasible in solving Biot’s consolidation
problems whether the node distribution is structured or unstructured.

5.3. Time integration factor h

Spurious ripple effect is observed when time integration factor is taken as h ¼ 0:5. The time step size here
is the same as fully implicit scheme. Although Crank–Nicolson scheme has second order of accuracy, the
spurious ripple effect will affect numerical stability. Fully implicit scheme is only one order of accuracy, but
no spurious ripple effect is observed. This is its advantage. Fig. 9 gives a typical dissipation curve along
middle line for 1D and 2D problems when h ¼ 0:5. Obviously, Crank–Nicolson scheme has spurious ripple
effect for both problems under current time step sizes. It is noted that the spurious ripple stems from
drainage boundaries and dissipates into internal nodes as shown in Fig. 9(b). The higher order accuracy is
lost due to this spurious ripple effect. From the view of computation, the Crank–Nicolson scheme spends
more CPU time on converting the previous node pressure into current node load as given by Eq. (36).
Therefore, fully implicit scheme is a better choice for numerical computation.

5.4. Effect of radial basis functions

This section compares the numerical results obtained through MQ and EXP basis functions. Fully
implicit scheme is used for time domain ðh ¼ 1:0Þ. The model parameters are q ¼ 1:03 and R ¼ 0:1 for MQ
basis and b ¼ 0:025 for EXP basis. Regular and irregular node distributions are used for both 1D and 2D
problems. Fig. 10 shows typical curves of excess pore water pressure and vertical displacement for the 2D
problem under regular node distribution. Fig. 11 compares the numerical results obtained from irregular
node distribution. Basically, the results agree well for different radial basis functions. Therefore, the radial
PIM with EXP and MQ bases is suitable for any node distribution. Our computations also indicate that
MQ basis is more numerical stable and has higher accuracy than EXP basis if the constant influence do-
main size is applied to the whole problem domain.

6. Conclusions

The radial PIM with linear polynomials is applied to study the numerical solution of Biot’s consolidation
problem in foundation engineering. We first study the expression of the Biot’s theory for general constit-
utive laws of soil skeleton. A weak form for error auto-corrector is developed based on this expression.
Spatial variables of displacement increment and excess pore water pressure are all discretized by the same
radial PIM shape function. Time domain is discretized by fully implicit scheme to eliminate spurious ripple
effect. Some examples demonstrate its feasibility and effectiveness. From these studies, following conclu-
sions can be drawn:

First, radial PIM is an effective interpolation technique for scattered node distributions. It is suitable not
only for structured nodes but also for unstructured nodes without any singularity problem. This is its
advantage over the original PIM with only polynomial basis. Unlike meshless methods based on the MIS
method, the radial PIM method obtains its shape function and derivatives once B�1

0 or G�1 is obtained and
shape functions are of delta function properties, thus essential boundary conditions are easily implemented.
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Second, both EXP basis and MQ basis have good accuracy for any node distribution. The examples
show that the MQ basis is more stable than EXP basis for unstructured and variable density node dis-
tribution. The choice of model parameters will affect the accuracy of radial PIM. The b ¼ 0:025 for EXP

Fig. 10. Numerical results of 2D problem obtained by EXP and MQ bases (over regular node distribution).
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basis and q ¼ 1:03, R ¼ 0:1 for MQ basis are good parameters for the examples in this paper. Parameter
study is a complicated problem that will be discussed in another paper.

Fig. 11. Numerical results of 2D problem over irregular node distribution.
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Third, spurious ripple effect can be avoided if proper time discretization scheme is used, even if the same
shape functions are used for both displacement and excess pore water pressure. Fully implicit scheme in this
paper is free of spurious ripple scheme, while Crank–Nicolson scheme requires time step size within some
range. Therefore, the time step size in fully implicit scheme can be bigger than Crank–Nicolson scheme.

Finally, the weak form developed in this paper is suitable for radial meshless method. This weak form
can automatically correct the error during each time step and thus keep the same accuracy of global
balance. This correction prevents the propagation of numerical error with time step. On this meaning, the
weak form is useful not only for the numerical solution of Biot’s consolidation problems but also for non-
linear problems.
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